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INTRODUCTION

All new fixed and rotary winged military aircraft will make

extensive use of composite materials to reduce weight and

fabrication cost. These materials have been extensively used on

secondary structure for more than a decade and are now beginning to

be routinely used on primary structure. As the percentage of

composite structure in an aircraft increases it becomes imperative

to have reliable nondestructive inspection techniques to locate and

quantify the extent of damage.

Composite materials exhibit significantly different

damage/failure mechanisms than comparable metallic structures

due to their laminated construction and generally weaker through-

the-thickness mechanical properties. The issue of damage and

failure mechanisms in a composite becomes more confusing with the

inclusion of three-dimensional fiber architectures used to enhance
T.

damage tolerance. It is not uncommon for composite structures to

exhibit invisible front surface damage from a foreign object impact

but have extensive back surface damage.



Another potential damage/failure scenario with composite
structure is related to disbonds between stiffeners and skin

elements. Composite structures will make extensive use of cocuring
or adhesive bonding of structural elements to eliminate the cost
associated with mechanical fastening. Potential disbonds between
elements can occur from manufacturing anomalies, excessive loads
or as a result of foreign object damage. These disbonds are usually
invisible and can not be detected or quantified except under precise
laboratory conditions. Therefore, with the increased utilization of
composites it is imperative to have reliable, accurate and rapid
nondestructive evaluation (NDE) techniques to locate and quantify
the damage and flaws.

V

There are many different NDE techniques used with composite
materials and structure. These NDE techniques range from
unsophisticated (tapping) to very high tech (CT scan). Considering
the magnitude of the area to be inspected on an aircraft the process
used to locate damage or flaw sites must be rapid. However, the NDE
techniques that are applicable for quantizing damage are slow and
can be only realistically applied to localized areas. Furthermore,
the NDE technique should be one sided, that is the NDE technique
should not require instrumentation located on both sides of the
structure to perform the desired measurement. An approach to
satisfy these requirements is to use two different one sided NDE
methods thermography and ultrasonics. Thermography is used to
rapidly locate the damage or flaw and ultrasonics is used to quantify
the damage.

V

In this study NDE results from thermographic and volumetric

ultrasonic techn!ques will be presented. Two types of specimens
were used in this study, flat panels and a "Y" stiffened panel. Both
types of specimens were fabricated from composite materials. Flat
panels are fabricated with either carbon or Kevlar through-the-
thickness (TTT) reinforcements. All specimens were impacted using
an aluminum ball propelled by an air gun. Impact speed ranged from
91 to i67 m/sec. A brief discussion will also be presented on how
the authors envision field deployment of thermographic and
ultrasonic systems.
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SPECIMENS

-_ Two types of composite specimens were used in this study to

demonstrate the effectivenessbf thermographic and ultrasonic

damage detection and quantification, They are integrally woven flat

panels with TTT reinforcement, see Fig. 1, and a "Y" stiffener panel,

see Fig. 2. These two different types of specimens are

representative of the different material forms and structural

complexity found on aircraft.

Through-the-thickness
yarn

0.64 cm

0.64 cm

0.32 cm Catcher yarn

Figure 1" Integrally woven 3-D weave preform architecture.

The flat panels with TTT reinforcement were fabricated as dry

integrally woven preforms. The TTT reinforcement was either Toray

carbon stitching yarn or a 1100 denier Kevlar yarn. These panels had

a fiber orientation of [0190/0190/0/90/0/90/0] composed of 21K

filaments/yarn AS-4 carbon fibers. The 21K AS4 yarn was produced

by combining 3K, 6K and 12K yarns. Row and column spacing of the
TTT reinforcement was 0.64 cm creating a cell like grid. All

preforms were infiltrated with 3501-6 epoxy resin and cured. The

cured panels were approximately 0.64 cm thick. Three impact

specimens of each TTT reinforcement type having dimensions 10.16

cm by 15.24 cm were machined from the cured panels (total of 6

specimens). The impact specimens were impacted with a 1.27 cm

diameter aluminum ball using an air gun. One specimen of each TTT

=
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reinforcement type was impacted with an energy of approximately

14, 27 and 41J.

The "Y" stiffened panel was 45.72 cm in length and 15.24 cm wide

and having a stiffener width of approximately 10.16 cm, see Fig. 2.

The skin of the panel was composed of 24 plies of tape prepreg

Figure 2: "Y" - stiffener panel.

having a stacking sequence of [(+45/-4510)2 (-45/+45/90)]2S. The

web of the stiffener was composed of 16 plies of tape prepreg

having a stacking sequence of [(+45/-45/90)2/+45/-45]S. All

prepreg material was IM7-8551-7 a high strain and rubber toughened

system.

Aluminum ball impacts on the front surface (skin side) consisted

of three along the stiffener flange and one mid-way between the

stiffener flanges. Three impacts along the stiffener web and blade

intersection on the stiffener side of the panel were made. The

energy of the impacts were between 14 and 41J.

THERMOGRAPHY INSPECTION

W

The thermography technique has the advantage of being non-

contacting single sided and able to examine fairly large areas rapidly.

The impact damage was imaged by measuring differences in the

sample's cool down response caused by thermal diffusivity changes.

Thermal diffusivity is a material property governing the rate in
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which heat flows within a material. An overview of the theoretical

basis is presented followed by a description of the experimental
method.

THEORETICAL BASIS

The thermal response of the composite was determined by

assuming the composite was a'single, _homogeneous layer with

flashed radiant heating at one surface (x = 0) and negligible

convection losses. The derivation [1] for a normalized front surface

temperature response follows. The one dimensional heat flow is

described by the following equation:

_2 T (x, t)
o_T (x, t)=o_ (1)

a t o_x 2

with boundary conditions"

aT(x, t)
= _(t) forx = 0 (2),

at

and

o_T(x, t) = 0 forx = I (3),
oqt

where I is the layer thickness, o_ is the effective layer thermal

diffusivity, and T(x,t) is the temperature. A solution for the

temperature decay due to an impulse input at t = 0 to the front

surface is given below as:

oo

(x-2nl) 2 (x+2nl) 2.

T(x,t)- Q + Q n_.,=l( e° 4_t +e 4_t ). (4)2 _/_-_Ott 2 1(-_O_t

Where Q is the energy per unit area. The normalized cool down

temperature response of the layer can be expressed from (4) as:
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NT ( 0, t )= ( 1.2 _ e_-_-). (5)
n=l

where t > to , to is '_he time just after the heat impulse, and

summing to the first four terms gives 6 place accuracy. Equation (5)

is equivalent to normalizing with respect to the temperature

immediately following the removal of heat. This normalization

process helps to remove the uneven heating and surface emissivity
variations.

v

For imaging it is convenient to define the averaged normalized cool

down response for the layer front surface as:

|t

NT(O,t)

NT(O,t)= t=to
n (6)

This equation is plotted for different values of diffusivity in figure 3

with to = 1.0 and tf = 93.0 seconds. Discrete time steps of one

second were used in the calculation. Impact damage tends to lower

the diffusivity and therefore the lower normalized values would

correspond to the damaged areas.

The time in which the heat diffuses through the material can be

expressed in terms of the thermal time constant:

t= 12- (7)

Typically, lower layer diffusivity values require longer times for the

heat to propagate into the sample. Any impedance mismatches

(delaminations) will cause reflected energy to diffuse back to the

surface thereby affecting the cool down response. The maximum

inspection depth is dependent on such things as damage size and
depthl Delamination diameters which are smaller than the depth are

normally undetected [2].

. _ ii _.
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Variations in the cool clown response due to diffusivity

MEASUREMENT SETUP AND APPROACH

A typical thermal inspection system is shown in figure 4 and

consists of four main components: the heat source, infrared camera,

image processor, and computer. The heat source used in this study

was commercially available photographic light sources. The light

sources were Xenon flash tubes powered by a 6400 watt-second

power supply. For symmetric heating two sources were used. The

infrared camera was a scanned HgCdTe detector with a minimum

temperature resolution of .1 degrees Celsius and a 2 milliradians

instantaneous field of view. The camera output, 30 frames/sec., was

connected to a real time image processor for digitizing, real time

averaging, and storage. The computer controlled experimental

parameters such as flash triggering, digitizing delay times and

number of frames averaged. The computer was also used for

subsequent data reduction.



Figure 4: Thermal inspection setup.

The measurement protocol consisted of flashing the lamps to
induce a thermal wave into the material. The video from the infrared

camera was digitized and averaged in real time to capture the post
heating images. A fixed number of averaged images (256 x 256 x 16
bits) were then stored within the image processor memory. The
following equation was used to compute the output image:

kL,

(Xi,n- Xi, k )
output image z..,

(k-j) Xi,jn=j

(8)

Where i is the number of images averaged in real time per stored
image, k is the total number of stored images, n is the stored image
number (sequential in time from 0 to k), and j is the normalizing

image number. Dividing by the image Xi, j performed the

normalization and subtracting image Xi, k provided a background
subtraction. The background subtraction was necessary to cancel out
some fixed line distortion produced by the camera and also helped to
reduce emissivity variations. The parameter i, number of images

W
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averaged in real time, was calculated using equation (9). Equation (9)

was derived from equation (7) by letting t., i/30 and I --- 21d. By

adjusting i, the depth of inspection per stored image can be computed
as:

l d = _ (9)
10.95

The TTT reinforced composite had 8 interfaces and therefore Id was

chosen to be approximately equal to the thickness of one interface.

It is interesting to note that some through the thickness information

is obtainable using this approach. By visually comparing respective

output images for different values of j the best output image was

chosen. The following values given in table 1 were used in the

thermal inspections.

SAMPLE TTT REINFORCED Y - STIFFENED

*DIFF. (cm^2/sec.) .0069 .0053
T

THICKNESS cm .64 .34

AVE. FRAMES, i 90 128

STORED IMAGES, k 32 12

NORM. IMAGE #, j 3 0

TABLE 1" Measurement values used in the thermal inspections.

*The diffusivity values were measured thermally using a technique

discussed in reference [3].

ULTRASONIC INSPECTION

Ultrasonics is the most commonly used inspection technique for

composites. Typical ultrasonic inspections consist of attenuation

measurements over a given area using a through transmission

configuration (C-scan). A C-scan measurement was made on the

samples but a new method [4] also employed leads to increased detail

V



about the damage state of an impacted composite. The ultrasonic

technique used in this study has the advantage of quantifying the

defects by providing a volumetric through the thickness view. Using

a pulse echo configuration, the total backscattered wave which

includes the front, internal, and back surface reflections is used in

the analysis. Signal processing and data visualization methods are

used to provide impact damage images at different depths. An

overview of the analysis is presented along with the measurement

approach.

ANALYSIS

The material's response to an ultrasonic wave can be shown

schematically as:

g(t) _ __ --> f(t) (10)

where g(t) is the input function, h(t) is the material transfer function

and f(t) is the measured response. The functional relationship for a

linear time invariant system is given by:

L_
f(t)=.l'h(t-t') g(t') dt'. (11)

The convolution of the input signal and material response leads to

the measured output signal. To solve for the material's response

equation (11) is evaluated in the frequency domain using Fourier

transform techniques [5]. The Fourier transforms were all determined

by numerical Fast Fourier Transform techniques. Thus the equation

can be written for H(w), the material's response in the frequency

domain, as:

H(w) = F(w)/G(w). (12)

G(w) was obtained by measuring the reflected signal off a brass plate.

The impedance difference between brass and the composite was not

used to renormalize the system response since we are only interested

in relative differences between damaged and undamaged material.

Taking the inverse Fourier transform of H(w) provides the deconvolved

material response h(t) in the time domain. The complete deconvolved

W
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result h(t) contains a solution for all frequencies up to the Nyquist

limit. A suitable digital filter is used to window the results only

over the bandpass of the transducer.

The output of the dec0nvoiutionprocedure h(t) was used as the

input to a calculation of the aria]-y_ti-c function and finally its

magnitude. The magnitude Of tlSeanalytic function has been shown to

be equal to the rate of arrival of the energy of the wave [6], It should

be noted that t'lle energy measured was not corrected for phase

cancellation effects at the face of the transducer. The form of the

analytic function for the backscattered ultrasonic wave is determined

-by _ t_king the Hilbert transform of the deconvolution h(t). This

pro_cles the imaginary part_of the analytic function. The full complex

analytic function _can be written as"

h A(t) = h(t) + i Hi[hit)]. (13)

The complex part of (13) is the Hilbert transform of h(t) which is

given as:

v

Hi[h(t)] = h (t')dt'

t t
(14)

The Hilbert transform is equivalent to the convolution of the

signal with the kernel 1/(_t)and techniques for calculating the

analytic function from the original signal are well documented [7].

Using complex Fourier transforms the material response in time space

is Fourier transformed to frequency space where all the negative

frequencies are zeroed before taking the inverse Fourier transform.

This result is equivalent to the analytic form of the signal. The

magnitude of the analytic function is then formed from the square

root of the sum of the squares of the real and imaginary parts of the

function. Applying this analysis gives the attenuation and depth

information necessary for volumetric imaging.



MEASUREMENTAPPROACH

The ultrasonic evaluation was performed in a water bath using a 5

MHz transducer with a 0.5 inch aperture and a 2 inch focal point for

the woven samples. A 15 MHz transducer with a 0.125 inch aperture

and a 2 inch focal length was used for the "Y" stiffener panel. The

transducer was operated in a pulse'echo mode and was excited with a

square wave pulser. The return signal was amplified and fed into a

Time-Gain-Compensated (TGC) amplifier [8]. A digitizer with

sampling rate of 50 or 100 MHz and 8 bit dynamic range acquired the

signal and passed it to a computer for later analysis. The entire

ultrasonic wave was digitized to include the front, interior, and back

surface reflections. A spatial sampling step of 1 mm was on the

order of the 3 dB point spread for the transducer as determined

experimentally. A typical sampling size was 80x80.

W

The TGC has a 50 MHz bandwidth, a 50 dB gain, and a control

bandwidth of 5 MHz. The TGC influence on the digitized signal is

shown in Figure 5. The difference between the TGC on and off is

quite dramatic. The front surface reflection is attenuated and the

interior and back surface signals are enhanced to the input limit of

the digitizer. This increases the effective dynamic range of the

digitizer.
V

An example of the signal processed waveform using the analysis

discussed previously is shown in figure 6. The front and back regions

of the sample along with the ply interfaces are easily located.

RESULTS AND DISCUSSION

This section will present a comparison of the thermal images and

ultrasonic "C" scan images. In addition, ultrasonic volumetric images

showing damage at different ply interfaces will be shown.

DAMAGE DETECTION

The thermal and ultrasonic "C" scan images of the Kevlar and

carbon TTT reinforced samples are displayed in figures 7 and 8

respectively. The top row are the thermal output images produced

w
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Figure 5. Waveform acquired with TGC off (top) and with TGC on.

using equation (8). The darker areas, which indicate the impact

damage, represent longer times for the sample to cool down relative

to the undamaged areas. The ultrasonic "C" scan images were

produced by measuring the relative attenuation. The darker areas

represent a greater attenuated signal thus indicating delaminations.

There seems to be an inconsistency for the 41J woven graphite

sample. The thermal image reveals a smaller damage area than the
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previous images at lower impact energies. The contrast for the 41J

woven graphite sample is greater however, and by optimizing the grey

map the resulting delamination area becomes larger. Implementing

image enhancement techniques using a statistical histogram

evaluation would be the next step in improving the thermal inspection.

The Y-stiffened top and side inspection images are shown in
figures 9 and 10 respectively. The top view thermal image (middle

image in figure 9) was not able to clearly define the smallest impact
area. This was a result of the camera's limited resolution. The

smallest impact area was detected successfully, however, by

decreasing the camera's field of view. It is important to note the

ultrasonic data for the side view (right image in figure 10) represents

two separate scans one along the base of the stiffener (area A) and

the other along the stiffener arm (area B). The side thermal image

represents an angled view and therefore areas A, B, C, and D were all

inspected at once. In addition to the side impact areas, the thermal

image shows some flange damage in areas C and D due to the skin side

impact.

The ultrasonic images provide more detail, but the inspection time

is approximately an order of magnitude greater than the thermal

W
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technique and also because thermal inspections are noncontacting
complex geometries are more easily inspected. These advantages
makes thermal an appropriate initial detection technique.

Impact Energy

14 J 27 J 41 J

Thermographic images

Ultrasonic images

Figure 7: Thermal and ultrasonic "C" scan images of Kevlar TTT

reinforced samples with damage produced from 14, 27, and 41 Joules
energy impact.

DAMAGE QUANTIFICATION

The processed wave form shown in figure 6, clearly delineates
the ply interfaces and the front and back surfaces. The location has

v



been localized in time over the original spread of the raw data and

is a positive definite waveform. This data is arranged into a three

Impact Energy

14 J 27 J 41 J

Thermographic images

W

Ultrasonic images

Figure 8: Thermal and ultrasonic "C" scan images of carbon TTT
reinforced samples with damage produced from 14, 27, and 4i Joules

energy impact.

dimensional array of x - y and time. The array can now be sliced in

any of the three axis to compare the relative signal levels from any

time and thus depth in the material. To view the damage from the

impact side to the back surface the data is displayed on a computer



monitor sequentially in a movie type format. Each frame of the movie

SKIN SIDE 156 m/s

X
129 rn/s 166 rn/s 93 m/s

X X X

=

. . .?;_;__ _ _, . ..__<
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Figure 9: Inspection images of impact damage on the skinside of the

Y- stiffened panel.

is a single digitized channel, and each frame is normalized to the 8 -

bit dynamic range of the display. Since the digitized waveforms are

in phase through the depth of the material, the relative backscatter at

any depth is a measure of the impedance mismatch at that depth. In

the case of a impact generated delamination, the relative amplitude

is well above the average backscatter due to the ply interfaces.

Using this method the damage at each interface can be clearly
visualized.

A criterion for determining the total damage at each frame and

thus depth can be identified. The area of the damage at each depth is

much less than the entire frame area so that the image distribution is

centered about the average background value of scatterers. The

backscatter signal strength from the delaminations is well above this

background level. A statistical analysis of each frame is a

v
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Figure 10: Inspection images of impact damage on stiffener side of

the Y - stiffened panel.

means of determining the total area of damage. This was

accomplished by calculating the standard deviation of the

amplitude distribution of the entire 80x80 array for each frame in

the movie. For the purpose of this analysis a standard 3e greater

than the median value (1_) of the distribution was taken as the lower

limit for inclusion in the damage area. Thus for each frame every

pixel value that was greater or equal to I_ + 3_ was included in the

damage area calculation for that frame.

Shown in figure 11 is the result of this calculation for the case

of the carbon woven sample that had undergone a 41J impact. The

numbers indicate the interlaminar location. The pixels that had

V



values greater than I_ +3(_ are set at a white level and the rest of

the pixels were left at their original gray level. The characteristic

shape of the impact generated delaminations are well resolved. As

the images move to the back Surface the-clelamination areas are

shadowed by the preceding_de_aminations.

iiii A-destructive _est of the damage_area-is very difficu_{-_-f_-t_e-se

TTT reinforced samples. Sections were taken near the impact point,

but visual determination of delamination cracks with a microscope

at 100x were not possible. By soaking the sections in dye penetrant

and taking an x-ray, some delamination cracks were visualized. The
TTT reinforcements have the effect of keeping the cracks closed

an-d it is felt the ultrasonic volumetric method gives a more

realistic image of the impact generated delaminations.

The Y-spar section was imaged similarly for the volumetric

damage and various interfaces are shown in figure 12. The scan
size is 12 x 8 centimeters With a 0.1 cm step size. There are a

possible 22 interfaces to image for the skin side of this specimen.

All interfaces are detectable _y a front surface ultrasonic

volumetric method with some shadowing of underlying damage.

FIELD DEPLOYMENT OF THERMOGRAPHiC AND ULTRASONIC

SYSTEMS

As previously shown the single sided thermographic system

accurately detects the location of damage. The area that can be

effectively scanned at a location is a function of the resolution of

the thermographic camera, thickness of structure and heat transfer
characteristics of the material The scan rate to determine if any

damage occurs or if a flaw exists is a function of CPU speed of the

host microcomputer. With a current MAC microcomputer the entire

process of acquiring and processing thermal data is on the order of a

couple of minutes. This time decreases nearly linearly with

computer CPU speed. The equipment used in this thermographic

technique is very transportable.
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1 2 3

4 5 6
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Figure 11" Through the thickness ultrasonic images for the carbon

woven sample with 41J impact. Numbers indicate interlaminar
location.
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Figure 12: Through the thickness ultrasonic images of impact

damage on the skin side of the "Y" stiffener panel. Numbers indicate
interlaminar location.



Single sided volumetric ultrasonic imaging has been shown to

provide details of internal damage in panels with TTT reinforcement

and structure having complex geometry. Although the current
investigation was conducted using a conventional water tank

ultrasonic system, dry contact ultrasonic transducers are available.

It is envisioned that a dry contact conformable array tra_nsdu_er can

be fabricated to replace the water submersion system used in this

study. The conformable array would be placed over the damage.

Transducers in the conformable array would be scanned and an image

of the internal damage would be produced.

A rendition of how the thermographic and ultrasonic systems can

be field deployed is depicted in figures. 13 and 14. The heat source

V

TH ERMAL INSPECTION OF COMP_TE

• Next Generation Composite Helicopters

W

Figure 13: Field deployable thermographic inspection system.

lamps and thermographic camera are placed near the inspection

location. The microcomputer and data acquisition system is

contained in a console and can be moved along the aircraft. After a

section of the helicopter is scanned for damage or flaws then the

equipment is moved. When damage or a flaw is located then the spot

is marked for ultrasonic inspection. A conformable dry contact

array is place over the damage and the array is scanned. The data

acquisition and data reduction console is position near the array and



a volumetric image of the damaged area is created. Data processing

time is a linear function of computer CPU speed and generally

requires only a few minutes on a RISC computer.

_N_glMPAC-T_[)AMAGE

-- Next Generation Composite Helicopters

Ultrasonic

............................................... Array

Figure 14: Field deployable ultrasonic imaging system.

CONCLUSIONS

This work demonstrates that a multidisciplinary NDE approach

for impact damage detection in composite structures can be used to

produce a more efficient inspection. The multidisciplinary NDE

approach relies on fast large area thermographic inspections along
with detailed ultrasonic volumetric imaging. The thermal inspection

technique rapidly identifies the impact damage. The ultrasonic

volumetric imaging quantifies the impact generated delaminations

through the volume of the structure.
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